How To Craft

Pre big bang how to craft power crystals

  1. Home
  2. Entertainment and Movies
  3. Pre big bang how to craft power crystals
Pre big bang how to craft power crystals
May 29, 2019 Entertainment and Movies 1 comment

There has been light from the beginning. There will be light, feebly, at the end. In all its forms—visible and invisible—it saturates the universe. Light is more than a little bit inscrutable. Modern physics has sliced the stuff of nature into ever smaller and more exotic constituents, but light won't reduce. Light is light—pure, but not simple. No one is exactly sure how to describe it. A wave? A particle? Yes, the scientists say. Both. It is a measure of light's importance in our daily lives that we hardly pay any attention to it. Light is almost like air. It's a given. A human would no more linger over the concept of light than a fish would ponder the notion of water.

There are exceptions, certain moments of sudden appreciation when a particular manifestation of light, a transitory glory, appears—a rainbow, a sunset, a pulse of heat lightning in a dark sky, the shimmering surface of the sea at twilight, the dappled light in a forest, the little red dot from a professor's laser pointer. Stained glass in a church, backlit by a bright sky. The flicker of a candle, flooding a room with romance. The flashlight searching for the circuit breakers after a power outage.

Usually, though, we don't see light, we merely see with it. You can't appreciate the beauty of a rose if you ponder that the color red is just the brain's interpretation of a specific wavelength of light with crests that are roughly 700 nanometers apart. A theatrical lighting director told me that she's doing her job best when no one notices the lights at all. Her goal is to create an atmosphere, a mood—not to show off the fancy new dichroic filters that create colors of startling intensity.

As someone whose understanding of light pretty much began and ended with the flipping of switches, I worried that a story about light would be rather ethereal and esoteric. Surely there wouldn't be anything resembling breaking news on the light beat. Wrong!

Try an Internet search under the keyword "photonics." A photon is what you call light when it's behaving like a subatomic particle. Photons, it turns out, are a hot commodity. They are replacing electrons—we know them from grade school as the negatively charged particles that orbit the nuclei of atoms—as the favorite tool of modern industry for transmitting information.

Light is now used for everything from laser eye surgery to telephone technology. The potential military applications of light are straight out of science fiction, and within a decade light may be the preferred weapon for zapping hostile missiles out of the sky. Light could even become the preeminent power source for long-distance space travel. The spaceship would have an ultrathin sail to catch the "wind" of light beamed from an Earth-based laser. In theory such a craft could accelerate to a sizable fraction of the speed of light—without carrying fuel.

The more you look at the topic, the more you realize that ours lives are built around light, that our daily existence is continuously shaped—and made vivid—by that ambiguous stuff that dates from the beginning of time. From our technology to our spiritually, we are creatures of light.

One question won't seem to go away: What is light, exactly? I got a piece of the answer from the world's largest laser, the National Ignition Facility. NIF is under construction at the Lawrence Livermore National Laboratory about an hour east of San Francisco. The laser is actually 192 lasers in collusion—or perhaps one should say collision. The 192 individual beams of light, grouped in bundles of four, will travel the length of a hulking building 700 feet (213 meters) long and 400 feet (122 meters) wide. Entering a switchyard of mirrors, each bundle will ricochet and shoot through one of 48 portals of the target chamber. The chamber is the star attraction of the facility. It's 30 feet (9.1 meters) in diameter, weighing a million pounds. The portals give it a dimpled surface that brings to mind an enormous golf ball from outer space.

Inside the chamber the laser beams will crash into a gold-plated cylinder, slightly smaller than a bite-size Tootsie Roll, with a gas-filled pellet inside. The gases in the pellet, under the pressure of all this light, will compress to the point where they achieve nuclear fusion.

"The goal is to create a miniature star in the laboratory," said Ed Moses, the NIF project manager.

This is, to say the least, an ambitious project, and its 3.4-billion-dollar price tag has not eluded critics. They note that NIF may never actually produce a fusion reaction. Technologically, this is not a slam dunk. No one has ever successfully used light to drive together atomic nuclei. The big laser will let scientists study thermonuclear reactions without detonating a bomb. A long-term goal of NIF is to clear a technological path toward a source of cheap, inexhaustible, pollution-free electricity.

"NIF will produce more power in a one-nanosecond laser pulse than all the power generated in the rest of the world at that moment," said Vaughn Draggoo, the physicist who showed me the target chamber.

How is it, I asked Moses, that light is such a useful source of energy?

"Because you can compress a lot of light's energy in a very small point," he said. Children, he noted, discover this when they play with a magnifying glass on a sunny summer day.

Here we come to one facet of the miracle of light. It has no volume. And photons have no charge, so in the process of being concentrated into a very small space, they don't repulse each other as negatively charged electrons do. (NIF will fit 4 x 1024 photons into the target capsule.) "They don't bother one another" is the way Moses puts it.

How many angels of light can dance on the head of a pin? In theory, an infinite number.

As hard as it is to understand light, the ancients had it that much harder. Lacking scientific instruments, they could probe the nature of light only with their inventive minds. "Light is the activity of what is transparent," was one of Aristotle's rather opaque declarations. This transparency was an essential property of various substances; when activated by sun or fire, it produced light and color.

The fifth-century B.C. philosopher and poet Empedocles had the brilliant intuition that light is a streaming substance emitted by the sun and that we are not conscious of its movement because it moves too fast. But he also subscribed to the notion of the "fire within the eye," comparing the eyes to lanterns. Many Greeks, including Plato and Euclid, shared this belief that the eyes produce some kind of visual ray. It explained the curious fact that sometimes we look in the direction of an object but fail to notice it immediately. The ray, it was surmised, must strike the object directly before it can be seen. Aristotle was among those to point out that if this were true, we'd be able to see in the dark.

A thousand years ago the Arab scientist Alhazen argued that the pain we feel when we look at the sun is evidence that the light is entering the eye and not the other way around. Centuries later Leonardo da Vinci realized that the eye is akin to the camera obscura, pioneered by Alhazen, in which light passes through a pinhole into a darkened room and casts an inverted image of the exterior world onto a wall. Descartes later did a rather dramatic examination of the eyeball of an ox, scraping away the back of the eye and peering through it. He saw that the eye captures an inverted, upside-down image of the world. Why doesn't the world look upside down? Because our minds correct the image. Sight has both a physical and psychological element.

Light soon passed through the laboratory of Isaac Newton and never looked the same again. In the 1660s Newton demonstrated that white light is composed of all the colors of the spectrum. Using a prism, he broke sunlight into a rainbow, then later used a second prism to cohere the colors back into white light.

"Whatever light be," he told the Royal Society in 1675, "I would suppose, it consists of Successive Rays differing from one another in contingent circumstances, as bigness, forms, or Vigour, like as the Sands on the Shoar, the Waves of the Sea, the faces of men, and all other natural things."

Newton believed that light was particulate—"multitudes of unimaginable small and swift Corpuscles of various Sizes, springing from Shining bodies at great distances one after another." Newton was such a giant on the scientific landscape that his rivals had little luck pushing the theory that light is a wave. The wave theory did not begin to rebound until the titans of 19th-century science joined the battle to understand light and overwhelmingly came down on the side of waves. It was James Clerk Maxwell, a Scot, who in the 1860s made one of the most essential breakthroughs. He had been studying electricity and magnetism and realized that they propagated through space at—coincidence—the speed of light. Light, he concluded, is an "electromagnetic" wave.

The particle versus wave debate wound up with a kind of truce, governed by quantum mechanics: Light is produced by changes in the energy level of electrons. Light moves through space as a wave, but when it encounters matter it behaves like a particle. It simply doesn't fit into one of our neat little categories. "Light, indeed, is different from anything else we know," writes Sidney Perkowitz, a physicist at Emory University and the author of Empire of Light. The era of permanent uncertainty began in 1900, when Max Planck's experiments with heat radiation implied that light pounded against matter in discrete chunks—quanta, he called them—like bullets from a machine gun. This seemed contrary to Maxwell's equations, and Planck was reluctant to believe it.

Enter Albert Einstein. It's common knowledge that Einstein, in promulgating the special theory of relativity, destroyed the mechanical, deterministic Newtonian universe. He achieved this theoretical breakthrough by thinking about…yes, light. Einstein did "thought experiments," and in one he asked what would happen if you could ride a beam of light and look at an adjacent beam. Wouldn't the adjacent beam of light appear motionless? Maxwell's equations didn't seem to allow light to slow down or stop when moving through space. Einstein's answer—that light's speed is constant for all observers regardless of their own velocity—obliterated the classical conception of space and time.

The groundwork was laid for Einstein by a famous experiment in 1887 by American scientists Albert Michelson and Edward Morley. The Earth, according to the orthodoxy of the time, moved through a fixed ether that filled space. No one had ever detected this ether, but common sense required its existence. Michelson and Morley set out to detect it by measuring the speed of light when light beams traveled with, and perpendicular to, the motion of the Earth. They expected light to show the effects of the "current" of this ether as Earth hurtled along. It didn't. The speed of light was the same no matter its direction. Scientists, including Michelson and Morley, were aghast and hoped that the results were simply wrong. Einstein accepted them. There is no ether, he said. There's no absolute location in space. There isn't even any absolute time.

I will confess that relativity makes my head spin. A beam of light from the headlamp of a speeding locomotive ought to move faster—says common sense—than the beam from a stationary flashlight. It doesn't. And there's nothing anyone can do about it.

Einstein's relativity presents all manner of head-scratching implications. It reveals that as objects approach the speed of light, time slows down. At the speed of light itself, time stops.

This fact can help us think about the journeys made by starlight and galaxylight and quasarlight across cosmic distances. We use the term light-year to express a unit of distance (about six trillion miles [9.7 trillion kilometers]). But if you were the light itself—if you could be the photon—you'd experience no time. That long journey would be instantaneous.

What we call light is really the same thing—in a different set of wavelengths—as the radiation that we call radio waves or gamma rays or x-rays. But in practice scientists often use the term "light" to mean the portion of the electromagnetic spectrum in the vicinity of visible light. Visible light is unlike any other fundamental element of the universe: It directly, regularly, and dramatically interacts with our senses.

Our eyes each have about 125 million rods and cones—specialized cells so sensitive that some can detect a mere handful of photons. "About one-fifth of your brain does nothing but try to deal with the visual world around you," says Sidney Perkowitz. The position of the eyes, semiprotected in the case of the skull close to the brain, is testament to the importance of visual data.

Light offers high-resolution information across great distances (you can't hear or smell the moons of Jupiter or the Crab Nebula). So much information is carried by visible light that almost everything from a fly to an octopus has a way to capture it—an eye, eyes, or something similar.

It's worth noting that our eyes are designed to detect the kind of light that is radiated in abundance by the particular star—the sun—that gives life to our planet. Visible light is powerful stuff, moving at relatively short wavelengths, which makes it biologically convenient. To see long, stretched-out radio waves, we'd have to have huge eyes, like satellite dishes. Not worth the trouble! Nor would it make sense for our eyes to detect light in the near infrared (though some deep-sea shrimp near hot vents do see this way). We'd be constantly distracted, because any heat-emitting object glows in those wavelengths. "If we were seeing infrared," physicist Charles Townes told me one day, "all of this room would be glowing. The eye itself is infrared—it's warm. We don't want to detect all of that stuff."

There is also darkness in the daytime—shadows. There are many kinds of shadows, more than you probably realize—certainly more than I realized until I consulted the shadow expert. I found him at the end of a long and winding drive through Topanga Canyon, just up the coast from Santa Monica, California.

David Lynch is an astronomer. He's also the co-author of a book called Color and Light in Nature, in which I discovered something about shadows that I'd never thought of before. Lynch points out that a shadow is filled with light reflected from the sky—otherwise it would be completely black. Black is the way shadows on the moon looked to the Apollo astronauts, because the moon has no atmosphere and thus no sky to bounce light into the unlit crannies of the lunar surface. Only the faint glow of earthshine filled the shadowy recesses.

Lynch is a man who, when he looks at a rainbow, sees details that elude most people. He knows, for example, that all rainbows come in pairs, and he always looks for the second rainbow—a faint, parallel rainbow, with the colors in reverse order. The intervening region is darker. That area has a name, wouldn't you know: Alexander's dark band.

We sat on Lynch's deck and drank orange juice squeezed from fruit freshly yanked from trees in his backyard. The view was spectacular, the canyon opening like a great basin, a mountain ridge obscuring the Pacific and running for half a dozen miles (9.7 kilometers) to Santa Monica.

"The reason those mountains over there look a little blue," Lynch continued, "is because there's sky between here and those mountains. It's called airlight."

The sky is blue because the molecules in the air scatter blue light more readily than they scatter red, orange, yellow, and green. We see distant mountains through a mass of blue sky—hence the Blue Ridge and (thanks to poetic license) " purple mountain majesties."

Las Vegas is a multitude of colors—a place that takes light seriously and can't seem to emit enough of it. The Strip is more dazzling by the year. The casinos no longer advertise themselves with mere neon-lit roadside marquees but rather have turned their entire structures into eyeball-popping orgies of illumination. "Now the whole building is a sign," says longtime sign dealer Ken Moultray.

The entirety of the MGM Grand glows emerald. Fiber optics pulse light to the tower of the Stratosphere. The vertical neon stripes adorning the Rio are visible from distant mountains.

The Luxor Resort and Casino is a pyramid and, perversely, remains almost entirely dark at night, a massive black presence dramatically highlighted by the golden glass of the Mandalay Bay Resort next door. Instead of dressing itself in countless little bulbs or immersing itself in floodlights, the Luxor aims its Sky Beam—said to be the brightest light on the planet—straight into space.

I followed John Lichtsteiner, technical manager of rides and attractions at the Luxor, up three metal ladders onto the catwalk at the pyramid's peak to see the 39 xenon lamps, 7,000 watts each that create the Sky Beam. A sign warns that the lights, each about the size of a washing machine, are "extremely volatile" and can explode if jarred or bumped.

Lichtsteiner explained that before a computer turns on the Sky Beam each night, strobe lights flash for 30 seconds. "We don't want to surprise any pilots," he said.

He pressed a button on a digital console to illuminate one of the lamps. Its light was so bright that when I put my notebook into the beam, I had to look away quickly. My pen strokes vanished, and all I could see was a rectangle of blinding white light.

We climbed above the lamps to the very tip of the pyramid. Vegas sprawled for miles in every direction. In the daytime the place is rather washed out, the colors flattened. The sparkle, the glitter, the almost hallucinatory colors of Vegas at night are obliterated in the white light of the desert sun.

"Now there's a lamp," I said, nodding toward that natural beacon in the sky.

Later I went to see a show at the Bellagio. Walking into the theater, I was mesmerized by the red curtain. It looked…really red. It also looked heavy, velvety, like a curtain in a baroque theater.

What I didn't know until later was how much my eyes were being fooled by clever lighting. The lighting designer, Luc Lafortune, uses two different sets of lights—a bright red aimed straight at the curtain and a softer red shining in from the side—to create a sense of depth and heaviness in the fabric. The curtain is actually made of a lightweight fabric that enables the stage director to whisk the whole thing aside in a flash.

Jeanette Farmer, lighting director for the show, showed me around backstage. She keeps track of 2,000 computer-controlled lights and 1,695 dimmers. She can do much of her work at a console—no more climbing ladders to change filters. Little motors in the lamps do all that. She no longer uses just single-gel filters over white lights to create yellow or red or blue. State-of-the-art stage lighting uses dichroic filters, pieces of glass with mineral coatings. These provide a purer, more intense light—the kind that made the curtain look like shimmering red velvet. The old gel filters let in a lot of "noise," while the dichroics select a very narrow slice of the spectrum.

Farmer gives credit where it's due—to Isaac Newton, for realizing that white light is composed of different colors. "In so many ways he laid the groundwork for all of us," she said. "He knew what the deal was."

"This is a very pure, straight beam." Charles Townes was showing me a helium-neon laser in his laboratory at the University of California at Berkeley. He has hundreds of lasers, including some that arrive in the mail as gifts, newfangled lasers smaller than matchboxes, green lasers soothing to the eye—all the various descendants of a gadget he invented in the 1950s. He and his brothers-in-law Arthur Schawlow developed the techniques that led to what was called "light amplification by stimulated emission of radiation." (Obviously the acronym would be easier for everyone to say.)

Light normally spreads out rapidly in all directions; a laser coheres the light in a narrow beam. The key to producing this beam is the basic atomic principle that says that photons—and now we're back to describing light as particles—can be absorbed or emitted by atoms.

When an electron changes from high-energy, or excited, state to a low-energy state, its atom will emit a photon. A laser exploits this process. It starts with a crystal or other medium whose atoms are prone to excitement. These atoms are slammed with light, causing their electrons to do a little dance. When they calm down, they release excess energy as photons. These photons, in turn, incite more electron dancing, which creates more photons—a chain reaction. Its physics, not magic, that causes more light to come out than went in.

The arrival of the laser was heralded by certain newspapers as the start of a new era of military death rays, the killer cousins of the Martian Heart-Ray in The War of the Worlds. But a half century ago Townes and Schawlow weren't actually sure what could be done with their invention—or with its prototype, the maser (which used microwaves instead of visible light). They just knew they'd figured out a nifty way to make light shine strong and straight.

"People used to kid me, 'Lasers are a solution looking for a problem,' " Townes said.

He thinks about that every time he goes to the checkout line at the grocery store, where light is used to scan the price of every product. A laser reads the CD in his CD player. Surveyors used a laser to gauge the precise property lines on Townes's New Hampshire farm. When he makes a long-distance phone call, his words are transmitted by laser light along a fiber-optic cable.

It's hard to overstate the usefulness of a tool that makes light shine straight. Laser beams fired from the Earth have bounced off mirrors left on the moon by Apollo astronauts, allowing scientists to measure the moon's distance—across more than 225,000 miles (362,100 kilometers)—to within half an inch (1.3 centimeters). Laser surgery corrects faulty vision in an increasingly routine procedure.

"When a friend comes to me and says laser surgery saved his eyesight, that's a very emotional thing," Townes says.

"Light is a universal probe," says Michael Hart, a physicist. He was showing me around the National Synchrotron Light Source, in Upton, New York. Built in the early 1980s, it's a sprawling device of comical complexity and is, Hart says, the "most used light source" in the world.

The synchrotron uses magnets to guide electrons around a ring that's about the size of a basketball court. Every time an electron turns a corner, so to speak, it emits a photon. The photons fly away from the ring in what are called beamlines. There are 92 beamlines in operation on two synchrotron rings, and each one has been customized with a dazzling array of mad-scientist gadgetry—dials, gauges, valves, pumps, vacuum chambers, optical sensors, wires, pipes, and lots of slapped-on aluminum foil. The different beamlines are used by researchers from universities, government labs, and places like IBM, Bell Labs, and Exxon.

What do they do with the light? Mostly they look at things—as you'd expect. They look at impurities in materials. They examine the porosity of rocks extracted from the Earth by oil drillers, eight of the beamlines are being used to study the three-dimensional structure of proteins in an effort to decipher some of the secrets of the human body.

For a while one of the beamlines was used for medical diagnostic procedure called coronary angiography. There was one hitch in doing the examinations: Who would want to sit in front of a giant ray gun that looks as though it could burn a hole through the Earth? The researchers constructed an examination room with a blank wall, with only the tiny numb of the beamline apparatus peeking through.

The photons here range from infrared radiations to x-rays—well beyond the range of visible light. Hart marvels that for so much human history we perceived the natural world only with visible light, that slice of the electromagnetic spectrum from red to violet. Making use of light beyond the visible realm has allowed scientists to create a new array of images of the reality around us. "We can see a single layer of atoms on a surface," Hart said.

Like everyone else I talked with who deals with light, Hart seemed almost in awe of the power of light. Technology constantly advances, allowing engineers to create ever brighter beams. The general rule, said Hart, is that brightness has increased a hundredfold every five years.

The telecommunications industry loves light. When you visit Lucent Technologies' Bell Labs in Holmdel, New Jersey, you're greeted with a sign saying "Welcome to Photon Valley." There has arisen something almost like a high-tech cult of light in this industry, built around the belief that human beings will increasingly exploit the almost infinite amount of bandwidth found in a light beam.

Kathy Szelag, a vice president with Lucent's Optical Networking Group, told me, "People like my parents think we're in the Star Warspart of optical networking. We're really in the crude oil part of optical networking. We're just at the beginning." Her colleague Bob Windeler, an optical-fiber researcher, added, "The amount of information you can put on a fiber more than doubles every year." In theory a single fiber could someday transmit every phone call on Earth simultaneously.

The optimism has been tempered of late by business woes among telecommunication companies, but the technology remains impressive. Take, for example, wavelength division multiplexing. Lasers are used to beam different wavelengths of infrared light down a single fiber. Each wavelength is its own data channel—its own pipe. Right now, a fiber can carry dozens of these channels, but that could become thousands or even millions. "It's as close to a miracle as there is," says Dave Bishop, Lucent's vice president of optical research—sounding very much like all the other light-crazy people I'd talked to.

George Gilder, a conservative political theorist who transformed himself into an influential technology guru, has declared in recent years that light will be the medium of a communications revolution. "You can envision a point where everyone in the world could have his own wavelength," says Gilder. "You'd have one wavelength that connected you to the person you wanted to address in Vienna or Tokyo or Tierra del Fuego, and this wavelength could easily accommodate three dimensional images. You could have conversations in which you forget within literally seconds that the person is not present. You see a face, the images saturates your own optical capabilities."

He adds, "I believe that light was made by God for communications." What orthodoxy-busting cosmic information will starlight deliver to our telescopes? Will the rotating disco ball ever make a dance-floor comeback? Above all, you have to wonder: Will we ever fully understand light?

We have spent thousands of years chasing sunbeams, and even if we never quite catch them, we still discover many a marvel in the pursuit. Modern physics, with its paradoxes and uncertainties, emerged from the study of the interaction of matter and light. Modern cosmology, including the stunning revelation that the universe is expanding, came from the scrutiny of faint galactic light. Modern computer engineering may eventually turn to light, crafting devices that, instead of silicon chips, have light beams at their core.

There have been recent headlines about scientists finding ways to make light go faster than the speed of light. This is what science fiction writers and certain overly imaginative folks have dreamed of for decades. If you could make a spaceship that wasn't bound by Einstein's speed limit, you could zip around the universe far more easily.

Lijun Wang, a research scientist at NEC Research Institute in Princeton, New Jersey, managed to create a pulse of light that went faster than the supposed speed limit. "We created an artificial medium of cesium gas in which the speed of a pulse of light exceeds the speed of light in a vacuum," he said. "But this is not at odds with Einstein." Even though light can be manipulated to go faster than light, matter can't. Information can't. There's no possibility of time travel.

I asked Wang why light goes 186,282 miles a second (299,792 kilometers per second) and not some other speed.

"That's just the way nature is," he said.

There are scientists who don't like "why" questions like this. The speed of light just is what it is—that's their belief. Whether light would move at a different velocity in a different universe is something that is currently outside the purview of experimental science. It's even a bit out-there for the theorists.

What's certain is that light is going to remain extremely useful—for industry, science, art, and our daily, mundane comings and goings. Light permeates our reality at every scale of existence. It's an amazing tool, a carrier of beauty, a giver of life.

I can't help but say that it has a very bright future.

5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on

Baby/Toddler,Apparel - Jeans/Pants,5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on Patches Embellishments & Finishes,unused,Children,curtain,unopened,Great for wedding,headbands,5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on 6452735588959,Embellishments & Finishes Patches 5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on,Condition:: New: A brand-new,Due to the handmade sewing,1X5 pieces,Crafts: MPN: : Does Not Apply,handbags,hair clip

You can adorn your clothing,Color: Multicolors,Patches Embellishments & Finishes 5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on,Apparel - Coat/Jacket,etc wherever you want,undamaged item (including handmade items),size may vary one to another approx 0,bouquets,UPC: : 6452735588959,Suitable For: : Accessories - Bags/Purses,5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on,Type: : Sew-On: Brand: : Unbranded,See the seller's listing for full details,Beanies,See all condition definitions : Country/Region of Manufacture: : China,clothing,hats etc






5 Star Rated Ceiling Fan Models

Available With Best Service
Value 6.6

How to Replace Electronics

5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on Patches Embellishments & Finishes 5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on Embellishments & Finishes Patches 5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on Embellishments & Finishes Patches 5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on Patches Embellishments & Finishes 5pc Exquisite Crystal Rhinestone Cross Badge Patches Clothing Decorative Sew on Patches Embellishments & Finishes

6 days ago Monster Crystals are made using the Maker skill, from ETC drops . Power Crystal: STR [2, 3, 5] You can't add the jewels to a pre-existing item, so poorly scrolled items and below average ones will take a hit when this is released. .. Mateon, Iron Mutae, Sand Giant, Straw Target Dummy, Bellflower.

That'll buy a lot of bananas! Hangover II star Crystal the Monkey named as one of TV's highest paid actors - commandeering $12k PER EPISODE

By Daily Mail Reporter

Published: | Updated:

She is only 20-years-old, yet has already appeared in more than 20 movies, counts Justin Bieber as one of her biggest fans and has just been named one of the highest paid actors on TV - pretty impressive for a monkey.

Crystal, a female capuchin monkey and animal actress, is the star of upcoming comedy Animal Practice - an NBC sitcom about the self-absorbed veterinary chief-of-medicine at a dysfunctional big-city animal hospital.

She has just been listed inTV Guide Magazine's annual highest paid stars list, commandeering $12,000 per episode. If the show goes full season then she will have earned $264,000 in total.

Scroll down for list

Super star: Crystal appears in Animal Practice with Justin Kirk, left, for which she receives $12,000-per-episode. She has also appeared in a number of commercials, including one for pistachios, right

Famous admirers: Crystal (with trainer Tom Gunderson) kies self-described biggest fan Justin Bieber a kiss on the cheek

Show stealer: Playing up for the cameras at the London premiere of the Hangover II in her pink stain dress and pearls

Not that she needs the money. Crystal last appeared in the Matt Damon Christmas movie We Bought A Zoo and was one of Hangover II's biggest stars, playing a drug-dealing, smoking monkey.

She also starred as the irritating Dexter in the 2006 film Night at the Museum and the 2009 sequel Night at the Museum: Battle of the Smithsonian.

Ben Stiller joked after appearing alongside her: 'I really dislike the monkey. There's no way to feel great about having a monkey slap your face on any level.'

Fellow Hangover star Ken Jeong, said of her: 'She's amazing. She's not a monkey, she's an actor. And quite possibly the best actor I've worked with.'

Multi-talented: Writer and producer of Community Dan Harmon of Community and Crystal the monkey onstage during Comic-Con 2011

Actress Kristen Bell poses with Crystal at the premier: the 20-year-old monkey has appeared in more than 20 movies and several TV shows

Even Bradley Cooper said she deserved an Oscar for her role - because she played a man.

Crystal lives with her handler and trainer Tom Gunderson and his family. She first rose to fame in the 1997 film George of the Jungle.

When she appeared on the red carpet for the premier of Hangover II, she turned monkey business into showbusiness and  upstaged costars Bradley Cooper, Ed Helms, Zach Galifianakis and Justin Bartha by wearing a pink dress and string of pearls.

When Justin Bieber met her he demanded a kiss from her and said he was her biggest fan.

Though Crystal's $12,000-per-episode is lagging well behind Ashton Kutcher's $700,000 for Two And A Half Men, she still manages to make the top five, a massive achievement for someone so young and of course a member of the animal kingdom.

Highest paid TV star: Judy Sheindlin is paid $45 million-per-year for her role on Judge Judy

Ashton Kutcher with Jon Cryer in CBS's Two and a Half Men: He receives $700,000 per episode and is the highest paid comedy actor on TV

As for the rest of the list, there were no surprises. Matt Lauer is the highest paid news star, earning $21.5million-per-year for the Today show.

Dave Letterman is king of the late night talk shows earning $28million-per-year.

Judge Sheindlin is by far the highest paid star. She gets paid $45million per year for her role as fierce-talking, no-nonsense Judge Judy.

DRAMA (per episode)

Mark Harmon - NCIS: $500,000

Ellen Pompeo - Grey's Anatomy: $350,000

Kevin Bacon - The Following: $175,000

Lucy Liu - Elementary: $125,000

Stephen Amell - Arrow: $30,000

COMEDY (per episode)

Ashton Kutcher - Two and a Half Men:$700,000

Kaley Cuoco - The Big Bang Theory: $300,000

Modern Family Adult Cast: $175,000 each

Lea Michele - Glee: $75,000

Crystal the Monkey - Animal Practice: $12,000


LATE NIGHT (per year)

David Letterman: $28 million

Jay Leno: $25 million

Jon Stewart: $16 million

Craig Ferguson: $8 million

Chelsea Handler: $8 million

DAYTIME/SYNDICATION (per year)

Judy Sheindlin - Judge Judy: $45 million

Joe Brown - Judge Joe Brown: $20 million

Kelly Ripa - Live! With Kelly: $20 million

Sherri Shepherd - The View: $1.5 million

Mario Batali - The Chew: $6,000 per episode


REALITY

Mariah Carey - American Idol:$17m per season

Howard Stern - America's Got Talent: $15m per season

Pauly DelVecchio - Jersey Shore: $175,000 per episode

Betty White - Off Their Rockers: $50,000 per episode

Landry Family - Swamp People: $25,000 per episode

NEWS

Matt Lauer - Today: $21.5 million

Bill O'Reilly - The O'Reilly Factor: $15 million

Diane Sawyer - ABC World News: $12 million

Anderson Cooper - Anderson Cooper 360 and Anderson Live: $11 million

Robin Meade - HLN anchor: $750,000

The comments below have been moderated in advance.

The views expressed in the contents above are those of our users and do not necessarily reflect the views of MailOnline.

We are no longer accepting comments on this article.

Share or comment on this article:

Crystal the Monkey named as one of TV's highest paid actors - commandeering $12k PER EPISODE

Dark Crystal

pre big bang how to craft power crystals

learning how to craft
How to unlock crafting in star ocean integrity
how to use industrial craft 2 teleport definition
Dragon age inquisition how to craft a masterwork
child craft london how to convert to twin bed
Diy crafts for home decor how to make
how to make crafts at home for kids
How to craft everspace
Joined
Jan 2, 2018
Messages
25
Best answers
0
THINGS YOU NEED TO KNOW ABOUT THE MAKER SKILL
  • You cannot craft equips that is 6 or more levels above your current level.
    • EX: If you are level 84 you cannot craft level 90 equips.
  • You cannot craft common items.
    • This includes items such as Capes, Work Gloves and etc.
  • You are not able to craft items that are Gachapon Exclusive.
    • EX: Pink Adventurer Capes
    • This does not mean you are not able to use items you received from gachapon to craft.
HOW TO GET THE MAKER SKILL
  • The Maker Skill Quest can be accepted through the NPC Moren, found in the Weapon and Armor Shop of Magatia (2nd Portal to the left). After talking to Moren, you will see that he will give you three quests that you must complete.
    • NOTE: There will be dialogue given, be sure to pay attention to it since there will be a quiz later on. Or don't its up to you TBH.
    • 1st Quest: Go to NPC Hughes the Fuse, found in the hidden room by entering through B2 in Orbis Tower.
    • 2nd Quest: Go to NPC Carson the Alchemist, found in the Zenumist Society Building.
    • 3rd Quest: Go back to NPC Moren and talk to him to finish his quest.
  • Once you finish those three quests talk to NPC Moren again and he will give you a quiz that is based on the dialogue in the three quests listed above to complete. Once finished hand it in and BOOM you have your Maker Skill Level 1!
HOW TO LEVEL UP YOUR MAKER SKILL
  • To level up your Maker Skill to Level 2 you must be Level 75+
  • Go back to NPC Moren in Magatia Weapon and Armor Shop and he will give you a quest to complete.
    • The quest will require you to craft an Intermediate Monster Crystal 1.
    • NOTE: NPC Moren will not always accept your Intermediate Monster Crystal 1, you will most likely need to craft several IMC 1.
    • NOTE: To craft an IMC 1 (Intermediate Monster Crystal 1) you will need to do either of the following:
      • Gather up 100 ETC drops from mobs within the level range of 71-80. For every 100 ETC drop you will be able to craft ONE IMC 1.
      • Disassemble equips within the level range of 71-80 and you will be given a random amount of IMC 1.
        • To disassemble an equip, open your Maker Skill and go to the FIRST drop down menu (the one on the left) and select Disassemble. Then proceed to the SECOND drop down menu (the one on the right) and select Monster Crystal. Finally drag your equip to the slot with the question mark and hit create.
  • After you crafted your Intermediate Monster Crystal 1, go back to NPC Moren and hand in the quest and he will reward you with the Maker Skill LEVEL 2!
  • To level up your Maker Skill to Level 3 (The max Level) you must be Level 105+
  • Go back to NPC Moren in Magatia Weapon and Armor Shop once again and you will receive another quest. After talking to him, talk to him once more to acquire Doodly Paper.
    • Open up your Maker Skill and proceed to do the following steps:
      • Select ETC. from the FIRST drop down menu (Drop down menu on the left)
      • Select ETC. from the SECOND drop down menu (Drop down menu on the right)
      • Combine 6 Gold Plates, 2 Steel Plates, 1 Lidium and the doodly paper to craft Gold Anvil
  • After crafting the Gold Anvil return to NPC Moren and hand in the quest and he will give you Maker Skill Level 3 (MAXED)

WHAT ARE THE STATS YOU CAN ADD ON AND HOW TO GET IT
  • First things first, you need to know about the types of gems you can get.
    • There are essentially FOUR rankings to a Gem:
      • Regular
      • Basic
      • Intermediate
      • Advanced
  • Each Gem will add a certain stat to your item and each RANKING will determine how much of said stat will get added on to your item.
    • EX: If you add a Basic Diamond to your socket when crafting a weapon, your weapon will have +1 Wep. ATT added to its Wep. ATT.
  • Now how do we get basic, intermediate and advanced gems? STRENGTHENING.
    • Step A: you press K or whatever button you keybinded your skill key to.
    • Second: Go to your beginner skills and scroll down until you see your Maker Skill
    • Step THREE: Open your Maker Skill and go to the FIRST drop down menu (THE LEFT ONE) and look for "STRENGTHENING"
    • Fourthly: Go to the SECOND drop down menu (RIGHT ONE) and look for the gem you are trying to strengthen.
    • E: Click Create.


MONSTER CRYSTAL RANKINGS AND LEVELS
  • BASIC MONSTER CRYSTAL 1 (BMC 1) - Mobs/EQUIPS within Level Range of 31-50
  • BASIC MONSTER CRYSTAL 2 (BMC 2) - Mobs/EQUIPS within Level Range of 51-60
  • BASIC MONSTER CRYSTAL 3 (BMC 3) - Mobs/EQUIPS within Level Range of 61-70
  • INTERMEDIATE MONSTER CRYSTAL 1 (IMC 1) - Mobs/EQUIPS within Level Range of 71-80
  • INTERMEDIATE MONSTER CRYSTAL 2 (IMC 2) - Mobs/EQUIPS within Level Range of 81-90
  • INTERMEDIATE MONSTER CRYSTAL 3 (IMC 3) - Mobs/EQUIPS within Level Range of 91-100
  • ADVANCED MONSTER CRYSTAL 1 (AMC 1) - Mobs/EQUIPS within Level Range of 101-110
  • ADVANCED MONSTER CRYSTAL 2 (AMC 2) - Mobs/EQUIPS within Level Range of 111-120
  • ADVANCED MONSTER CRYSTAL 3 (AMC 3) - Mobs/EQUIPS within Level Range of 121+
You must be level 45+ to get the Maker Skill. Any class, excluding beginners are able to get the maker skill.
If you're wondering why you should do all these quests to get Maker Skill Level 3, I'll tell you. With Maker Skill Level 3 you are able to add 3 Gems to your item now instead of 2 which means MORE STATS! ALSO you are now able to craft REVERSE/TIMELESS Equips!
Diamond, + Weapon Attack (1, 2, 3) Usable on Weapons only.
Sapphire, + Magic Attack (1, 2, 3) Usable on Weapons only.
Garnet, + Accuracy, (2, 3, 5)
Opal, + Avoid, (2, 3, 5)
Aquamarine, + Jump, (1, 2, 3)
Amethyst, + Speed, (1, 2, 3)
Topaz, + HP, (10, 20, 30)
Emerald, + MP, (10, 20, 30)
Black Crystal, +/- Random, (1, 2, 3) (Atk, M. Atk, Speed, or Jump)
Dark Crystal, +/- Random, (2, 3, 5) (Str, Dex, Int, Luk, Accuracy, or Avoid)
Power Crystal, + STR, (2, 3, 5)
Dex Crystal, + DEX, (2, 3, 5)
Wisdom Crystal, + INT, (2, 3, 5)
Luk Crystal, + LUK, (2, 3, 5)
1 Gem ~ 1 Basic 85%
1 Gem ~ 1 Intermediate 10%
1 Gem ~ 1 Advanced 5%
10 Basic ~ 1 Intermediate 85%
10 Basic ~ 9 Basic 10%
10 Basic ~ 1 Advanced 5%
10 Intermediate ~ 1 Advanced 90%
10 Intermediate ~ 9 Intermediate 10%
NOTE: Dex, Power, Wisdom, and Luk, Dark, and Black Crystals have a different set of percentages.
1 Gem ~ 1 Intermediate 9%
1 Gem ~ 1 Advanced 1%
10 Basic ~ 1 Intermediate 89%
10 Basic ~ 9 Basic 10%
10 Basic ~ 1 Advanced 1%
10 Intermediate ~ 1 Advanced 25%
10 Intermediate ~ 9 Intermediate 75%
Stimulators can be added when crafting your items to further heighten your equips stats or lower it. When crafting with a stimulator there is a 10% chance that your item will fail when crafting. If your item fails you will lose ALL the material you set when you initially crafted.
Last edited:
Joined
Jan 4, 2018
Messages
48
Best answers
0
Amazing guide for people who never used it before. Very detailed Thanks for effort.
Joined
Jan 1, 2018
Messages
116
Best answers
0
Wow Alex nice guide, great job on this
Joined
Dec 17, 2017
Messages
73
Best answers
0
TFW you've failed 7 times doing INT diamond to ADV diamond #firstunofficialperfectweapon
Joined
Jan 2, 2018
Messages
25
Best answers
0
TFW you've failed 7 times doing INT diamond to ADV diamond #firstunofficialperfectweapon
TBH its best to just strengthen reg diamonds to basic because you have a chance to get adv. doing int to adv is hard on your wallet
Joined
Dec 17, 2017
Messages
73
Best answers
0
TBH its best to just strengthen reg diamonds to basic because you have a chance to get adv. doing int to adv is hard on your wallet
yea, but when im left over with crap, theres only one thing left to do with it...
Joined
Feb 4, 2018
Messages
386
Best answers
0
Really helped me out! great guide!
Joined
Mar 11, 2018
Messages
35
Best answers
0
Question about Black crystals, seeing as how it says +/- att, m.att, speed or jump does this mean you can add att to gear that normally doesn't have att?
Last edited:
Joined
Feb 4, 2018
Messages
386
Best answers
0
Questiom about Black crystals, seeing as how it says +/- att, m.att, speed or jump does this mean you can add att to gear that normally doesn't have att?
Black crystal is useable on weapons only if im not wrong, only affect existing weapon att
Joined
Apr 20, 2018
Messages
10
Best answers
0
Could you explain more on Stimulators, I've crafted multiple Thief pants with Stimulators and they come out the EXACT same stat every time, I thought it was supposed to go from -5 ~ +5 for each stat?

Without Stim:





With Stim:



This is just one of MANY times that the stat came out exactly the same as without stims, is there an official explanation on Stimulators?
Joined
Mar 27, 2018
Messages
166
Best answers
1
Could you explain more on Stimulators, I've crafted multiple Thief pants with Stimulators and they come out the EXACT same stat every time, I thought it was supposed to go from -5 ~ +5 for each stat?

Without Stim:


View attachment 1896


With Stim:

View attachment 1897

This is just one of MANY times that the stat came out exactly the same as without stims, is there an official explanation on Stimulators?
Could be that stimulators make it so your item can not go below average but doesn't change anything regarding the max stats.
Assuming you didn't use strengthening crystals and some RNG, your items just came out average.

Blue

Game Master
Joined
Dec 10, 2017
Messages
410
Best answers
0
Could you explain more on Stimulators, I've crafted multiple Thief pants with Stimulators and they come out the EXACT same stat every time, I thought it was supposed to go from -5 ~ +5 for each stat?

This is just one of MANY times that the stat came out exactly the same as without stims, is there an official explanation on Stimulators?
It looks like you're not using any crystals to increase the stats but instead you're crafting it normally. ADV dark crystals add -/+5 all stats. Stimulators increase the crystal slot number for more potential bonus stats.
Last edited:
Joined
Apr 20, 2018
Messages
10
Best answers
0
It looks like you're not using any crystals to increase the stats but instead you're crafting it normally. ADV dark crystals add -/+5 all stats. Stimulators increase the crystal slot number for more bonus stats.
Ohh stimulators doesn't grant extra stats, but I don't get the increasing crystal slot number part? I just tried using Stimulators to craft the level 80 thief pants and the max crystal slot is still 2
Joined
Feb 19, 2018
Messages
220
Best answers
0
Ohh stimulators doesn't grant extra stats, but I don't get the increasing crystal slot number part? I just tried using Stimulators to craft the level 80 thief pants and the max crystal slot is still 2
I'm convinced stim's don't do anything for tops/bottom through my experience of making like 20 bottoms with stims. Not sure if I'm wrong here but I'm confident enough to say that I haven't seen it do anything.
Joined
Mar 22, 2018
Messages
61
Best answers
0
I'm convinced stim's don't do anything for tops/bottom through my experience of making like 20 bottoms with stims. Not sure if I'm wrong here but I'm confident enough to say that I haven't seen it do anything.
I wonder if this is a bug or if you were just unlucky. I also got 0 stats from the stims on tops/bottoms though
Joined
Apr 20, 2018
Messages
10
Best answers
0
Could be that stimulators make it so your item can not go below average but doesn't change anything regarding the max stats.
Assuming you didn't use strengthening crystals and some RNG, your items just came out average.
That's what I got from googling as well, but it's still really weird that I made many bottoms with the same exact Dex/Def/Avoid with and without stimulators. Even from hunting monsters you get ones with one extra stats here and there, but I might just be unlucky.

The Infinity Stones are six items of great power, and Thanos is the mad titan who preceded the Big Bang and were pressed into stones after the universe began. Ultron attempted to use the Mind Stone to craft a new body for himself. That body was recovered by the Avengers before he could insert his.

Announcement

[GUIDE] MapleStory item Maker Guide+Magic Powder drop list+Q&A section




What is "Maker skill"?

Maker skill is a newly released Beginner skill that allows players with a job other than Beginner to create equipment for their job class, you can create anywhere in the Maple world using a select "recipe" of items.

Using the skill, one can also increase (or in some cases, decrease) the base stats of the item during production through the use of additional items.

The Maker skill is a skill that any classed player (Pirate, Thief, Warrior, Archer, or Magician – Sorry beginners!) can obtain at level 45. You do this by going to Stan, an NPC in Magatia. Stan will give you a quest to go see “Hughes the Fuse” in Orbis Tower B2. After talking to Hughes, merely go back to Stan, and he’ll give you the skill! He also hands you a guidebook on how to use this skill. When you get it, the skill will be at level 1. You may level up this skill by performing later quests at level 75, and finally 105. You must level the skill in order to forge higher level equips.

  • Level 1 can only do equipments for level 50-70
  • Level 2 can do 50-100
  • Level 3 can do 50-120 (and presumably higher level than this, should they ever exist.) 
You can set it to a Hotkey like most other skills. 


You can use it to forge all the standard equips for your class, starting from level 50 (seeing as how weapons from 10-40 can simply be purchased from NPCs). In order to forge any particular equip, you must be at least 5 levels from being able to equip it. So, if I wanted to forge a level 70 weapon, I would need to be 65.
No, this skill may NOT be used to forge Maple weapons, Common class items (such as earrings or capes), or “gachapon” items, such as Stonetooth Sword/Ribgol. It MAY be changed when it gets to JMS or other versions, to forge equipments native to those versions. This is far from confirmed, however.


How do I get the Maker skill?
Once you reach Lv45, head over to Magatia to meet Meren, who is in the portal to the right of Phyllia (left half of the town). Accept the quest "Meren's new discovery" and finish the three sub-quests. Each of the three quests require you to pay 10,000meso. Return to Meren to take a little quiz to test what you remember of the quest dialogue for each of the quests. After completing the quiz, you earn the Maker skill.

How do I use the Maker skill?
The Maker skill, as with Monster Rider and Legendary Spirit, will be registered in the Beginner's Skillbook (the "dot" tab). It is used like any other skill - you can either set it to a hotkey or double-click the icon in the Skill Menu. Upon activating it, a window opens, where you can click the drop-down menus to select the items you want to make. Remember that you only know the recipes for equipment of your class, and only if you are at most 5 levels below the level requirement for that piece of equipment. Once you have selected an item, the materials required are displayed, as well as how much of each material you have. Click "Create" to make the item once you have enough materials. Take note that Gachapon-exclusive equipment such as the Blade/Doomsday Staff can't be forged.

Is there any chance of failure?
There is absolutely no chance to fail when using the Maker skill, unless you add in a Stimulator. In this case, there will be a 10% chance of failure, but the equipment might have better stats if the forging succeeds. The chance of failure is reduced by the Hands stat, which is calculated by DEX+INT+LUK.

So will the stats of the equipment be fixed?
Nope, they may be below average, average, or above average. Of course, if you add in Stimulators or Jewels, you may get better stats than usual.

Quote:
Originally Posted by Fattymum
I have made 2 reverse weapons

Wand - average tma 133,

+ wand sim + Inter Crystal + Inter Jewel + Int Dark Crystal

what i got : Wand ma 133 + 3 int = TMA 136

*************************

Staff - average tma 135

+ staff sim + adv Crystal + Adv Jewel + Adv DC

what I got : Staff ma 140 + 6 int = TMA 146

****************

For information, pls, what I derived from here was like scrolling, still depend on your luk !
What is the "???" option for?
It's either not implemented yet or it's just a visual glitch. It has been speculated that it can be used to forge equipment from other classes, but it doesn't work now even if it's supposed to do that. If needed, the recipes for the equipments can be found at Link #1. A printable version (courtesy of chrisloup) can be found at Link #2.

Why can't I make any more equipment past Lv70?
Lv1 Maker skill only allows you to make equipment up to Lv70. In order to forge higher leveled equipment, you will have to complete a simple little quest at Lv75 to level up the Maker skill to Lv2. You will then be able to forge equipment up to Lv100. Similarly, at Lv105, you can complete yet another quest to attain Maker Lv3, which allows you to forge equipment up to Lv120 (maybe Lv200, but that remains to be seen). The quest procedures have been so kindly listed down by rainday37 here:
Originally Posted by rainday37
Level 2 require you to collect lvl 71-80 mob drop x 100 and convert them into a monster crystal. Talk to Stan again to get your lvl2 skill. Do note that there is a chance that Stan will reject your crystal. Just re-do another monster crystal and pray he will accept it.

Level 3 require you to collect 6 Gold Plate, 2 Steel Plate and a Lidum.
Take note that Stan = Keol, and Lidum = Lithium.

What is "Disassembling"?
The "Disassemble" option destroys equipment to create monster crystals. It is likely that only forgeable equipment can be disassembled, and that you will receive the monster crystal required to forge it.

What is "Monster Crystal"?

Monster Crystal is a raw material that is required to make ALL equipment. Different grades and qualities of Monster Crystals are required for different sets of equipment. The better the equipment, the better the Crystals must be. Monster Crystals are made using the Maker skill, from 100 ETC drops of any monster Lv31 or higher that is NOT exclusive to World Tour maps (SG/MY included). Take note that you must have at least one empty ETC slot in order to turn the drops into Monster Crystals as you may get a better Crystal than the drop's supposed to give you.

Monster Crystals are forged from 100 ETC items from any monster. As new areas are released, the ETCs from those monsters are added (Such as Elin Forest monsters.) Monster crystals come in three grades, and are divided further into quality from that point. The quality and grade of a monster crystal are determined directly from the level of the monster that dropped the item. For example, if I went to hunt stone golems, I would get 100 Stone Golem Rubbles, and then use the Maker skill on them. They would forge a Low Grade Monster Crystal B, because Stone Golems are level 55. Only monsters over level 30 have ETC drops which can be used to make Monster Crystals. There is a SMALL chance that you can forge a higher quality Monster Crystal than the level range would indicate, however I have personally only had this happen when I used the skill many times in a row (Like after training, when I have 400 ETCs.) More testing needs to be done in this department.

Monster Crystal stats are as follows:
The Crystals you can get are as follows:

Low Grade Monster Crystal C

Basic Monster Crystal 1
Forged from Monster ETCs from level 31-50.

Low Grade Monster Crystal B

Basic Monster Crystal 2
Forged from Monster ETCs from level 51-60.

Low Grade Monster Crystal A

Basic Monster Crystal 3
Forged from Monster ETCs from level 61-70.

Mid Grade Monster Crystal C

Intermediate Monster Crystal 1
Forged from Monster ETCs from level 71-80.

Mid Grade Monster Crystal B

Intermediate Monster Crystal 2
Forged from Monster ETCs from level 81-90.

Mid Grade Monster Crystal A

Intermediate Monster Crystal 3
Forged from Monster ETCs from level 91-100.

High Grade Monster Crystal C

Advanced Monster Crystal 1
Forged from Monster ETCs from level 101-110.

High Grade Monster Crystal B

Advanced Monster Crystal 2
Forged from Monster ETCs from level 111-120.

High Grade Monster Crystal A

Advanced Monster Crystal 3
Forged from Monster ETCs from level 121-200.  


Notice that the change between grades occurs at 70-80, and 100-110. this is significant because you may only level up your Maker Skill at level 75 and 105. You don’t have to be in a town or anything to use this skill, so if you fill up your inventory full of ETCs while training, you can take a moment on a safe spot and use this skill to consolidate your hundreds of ETCs to a handful of monster crystals. it’s pretty convenient.

Additionally, you can optionally add new “graded” jewels to the formula. These are made from your standard gems (Diamond, Garnet, etc.) by putting them through the maker skill and appraising them. Each time you do this, it takes 100k. It has a high rate of coming out as low grade, a fair rate of coming out as Mid grade, and a low rate of coming out as High grade. I think it’s 70%, 25%, 5%, but I’m not positive. The grade will be denoted by a tiny mark in the corner, like a scrolled item. To upgrade it, all you do is select from the drop down list the “Jewels” and then in the list beside it, pick out the jewel you are upgrading, and then hit go:

Like Legendary Spirit, it has a “loading bar” style, so you’ll have to wait a moment to see what you got. In this case, I got a low grade. The use of these graded jewels is totally optional.
The item usages are as follows (information provided by Loose, which was originally from a deleted post by Fiel on sleepywood):

Type of Crystal – Stat added – [Low Grade, Mid Grade, High Grade]

[Basic, Intermediate, Advanced]
Diamond: Weapon Attack [1, 2, 3] - Only usable on weapons
Sapphire: Magic Attack [1, 2, 3] - Only usable on weapons
Garnet: Accuracy [2, 3, 5]
Opal: Avoid [2, 3, 5]
Aquamarine: Jump [1, 2, 3]
Amethyst: Speed [1, 2, 3]
Topaz: HP [10, 20, 30]
Emerald: MP [10, 20, 30]
Black Crystal: Random [1, 2, 3]
Dark Crystal: Random [2, 3, 5]
Power Crystal: STR [2, 3, 5]
DEX Crystal: DEX [2, 3, 5]
Wisdom Crystal: INT [2, 3, 5]
LUK Crystal: LUK [2, 3, 5]
Secret Crystal: Level Requirement [-1, -2, -3] - Not yet available in game.


[Low Grade, Mid Grade, High Grade]
Every different type of gem has a different affect on the end item. The stat crystals add the stat they are related to (IE, Dex Crystal will add Dex, etc.) Diamonds add weapon Attack, but they can only be used on weapons. Sapphire adds Magic attack, so it is a separate gem, and mages won’t have to deal with price hikes on Diamonds. It, too, only works on weapons. These don’t affect the slots at all, so you end up with an above average item with different stats on it. There’s no chance of the item breaking if you add a graded jewel to the formula. This is great, because you can use this skill to add a stat that isn’t normally found on something (For example, use a LUK crystal to add luck to an overall, or shoes) and then start tossing Chaos Scrolls on it. It really opens a lot of doors when used in conjunction with Chaos Scrolls.

For a Maker Skill at level 1, you can only use 1 jewel per formula. I believe the number of jewels you can use goes up as you level the skill, meaning that at 105 you could use a total of 3 jewels on one forged equip. They don’t all have to be the same jewels, either. Since a high grade Diamond will add 3 weapon attack. According to Blitzkrieg (Shrapnel of KMS), you may only use one of a jewel type per equip. One diamond, be it high grade or low grade. Now you see why this skill is useful, no? pineappleing godly.

On top of all that, you can use stimulators to forge things as well. They created Overall Stimulators and hat stimulators and so on now, so there’s a stimulator available if you choose to use one. stimulators DO, however, add a chance of failing to the item, which at default is 10%. The higher your Hands stat is (OMFG HANDS IS USED FOR SOMETHING), the lower the failure rate is, but this doesn’t lower the odds of the item coming out below. Since Hands is calculated from total Dex+Int+Luk, warriors and Infighters (who have mostly STR) are really screwed over by this. archers and gunslingers will have a harder time than Mages and Thieves, who will have their Hands at maximum. Stimulators can also be used in conjunction with graded jewels. Either way, I wouldn’t recommend using a stimulator, because the benefit of having it is outweighed by the odds of it ruining your item.

There’s also a series of quests associated with the skill that involve using it to forge special quest items. It’s pretty neat, but in the end it’s a decoy for collecting the items to forge the quest item.

One other thing, is that there’s a “Mystery forging” option. You can put whatever materials you want in there and try to forge something. I have no idea what it’s for and I’ve never been able to make anything in this way. I assume that if you knew the formula to forge an equipment from another class, you could use this option to make it, however I can’t confirm this. It also costs mesos to forge items, however the amount is typically a pittance in comparison to the items’ cost, though it is almost always higher than the NPC price of that item.

Some downsides to this skill system? For one, it requires refined gems, however you can’t use this skill to make ores into refined gems. This means you’ll almost always have to hike off to a town with a refining NPC. It can also get quite expensive, what with 100k to grade a refined jewel and meso costs to forge items. You can’t add the jewels to a pre-existing item, so poorly scrolled items and below average ones will take a hit when this is released. On top of this, since each type of jewel now has 4 forms (The ordinary refined, ungraded form, and the three grades) you’ll be wasting a LOT more ETC space on this. I previously speculated that people would create new mules for the sole purpose of carrying excess gems, Monster Crystals, and Magic Powders.
So how about weapons that aren't "coloured"?
They require metal plates instead of Magic Powder. The metal plates required are:
Bronze - Lv50 for non-mage. Lv48 for wands, Lv55 for staves.
Steel - Lv60/70 for non-mage. Lv58/68 for wands, Lv65/75 for staves.
Mithril - Lv80/90 for non-mage. Lv78/88 for wands, Lv85/95 for staves.
Adamantium - Lv100/110 for non-mage. Lv98/108 for wands, Lv110 for staves.
Orihalcon - Lv120 for non-mage. Lv118 for wands, Lv120 for Staves.

What's with the "Jewel" option in the recipes?
You can add in graded jewels while forging equipment. You will have to use the Maker skill to grade the jewels before you can use them for forging. Different jewels give different stats to the equipment. You can't put in more than one of the same jewel for any equipment. Do take note that when using Black/Dark Crystal, the stats in question can change anywhere in the range of the negative and positive of their values (e.g. Advanced Dark Crystal can modify stats by any value from -5 to +5). Here is a list of the stats given by each of the jewels:

[Basic, Intermediate, Advanced]
Diamond: Weapon Attack [1, 2, 3] - Only usable on weapons
Sapphire: Magic Attack [1, 2, 3] - Only usable on weapons
Garnet: Accuracy [2, 3, 5]
Opal: Avoid [2, 3, 5]
Aquamarine: Jump [1, 2, 3]
Amethyst: Speed [1, 2, 3]
Topaz: HP [10, 20, 30]
Emerald: MP [10, 20, 30]
Black Crystal: Random [1, 2, 3]
Dark Crystal: Random [2, 3, 5]
Power Crystal: STR [2, 3, 5]
DEX Crystal: DEX [2, 3, 5]
Wisdom Crystal: INT [2, 3, 5]
LUK Crystal: LUK [2, 3, 5]
Secret Crystal: Level Requirement [-1, -2, -3] - Not yet available in game.


[Low Grade, Mid Grade, High Grade]

Screenshots of Jewels in game:

Anything I should take note of on the grading of jewels?
It is possible to upgrade the jewels you have. This requires 10 jewels of the same grade. However, according to GreyMan, it's not worth upgrading your jewels to make them better.
Originally Posted by GreyMan
I have tried grading some diamonds to basic grade diamonds (+1 WA)... there is a chance that you will obtain intermediate (+2 WA) and advance grade diamond (+3 WA) as well. The fee to grade 1 diamond is 110k meso.
After obtaining 10 basic grade diamonds, you can upgrade it 1 intermediate diamond with a fee of 330k and a chance of failing. If fail, 9 basic grade diamonds will be returned and 1 will be consumed.
As you can see, the fee to make grade your jewels can be very costly, I think it is advisable to only grade them to basic grade and hoping to obtain an advance grade by chance. If not, you are going to waste a lot of meso..
Probabilities of grading results, posted by Chrisloup:
Originally Posted by chrisloup
Regular Ores
1 Regular ore ->: (70% for 1 Basic) (25% for 1 Intermediate) (5% for 1 Advanced)
10 Basic -> 1 Intermediate : (40% for 9 Basic) (60% for 1 Intermediate)
10 Intermediate -> 1 Advance : (70% for 9 Intermediate) (30% for 1 Advanced)

STR/DEX/LUK/WIS Crystal
1 Regular ore ->: (74% for 1 Basic) (25% for 1 Intermediate) (1% for 1 Advanced)
10 Basic -> 1 Intermediate: (40% for 9 Basic) (60% for 1 Intermediate)
10 Intermediate -> 1 Advance: (70% for 9 Intermediate) (30% for 1 Advanced)

Black/Dark Crystal
1 Regular ore ->: (67.5% for 1 Basic) (30% for 1 Intermediate) (2.5% for 1 Advanced)
10 Basic -> 1 Intermediate: (50% for 9 Basic) (50% for 1 Intermediate)
10 Intermediate -> 1 Advance: (75% for 9 Intermediate) (25% for 1 Advanced)
Quests requiring the Maker skill

How do I make the items for Keol's quests? What do I get for all my trouble?
Once you've received the quest, you'll be able to find the recipe for the item in the Maker skill's ETC category.
Here's a list of the items required and the quest rewards. Quest items provided by NGPriest of Aquila PB, rewards provided by OldCh4ngKee, edited by Torchic111:
(LEV45) Practice Shoes - 1xPractice Shoes Order Form, 10xSeal Skin, 5xNeedle Pouch, 5xThimble
seal – Freezer (Aqua), Needle Pouch – Black Porky (Mulung), Thimble – Porky (Mulung)
25000 EXP and a random Basic Jewel

(LEV50) Kid Shoes - 1xKids' Shoes Order Form, 20xJr. Yeti Skin, 3xDragon Skin
Jr Yeti Skin – Jr Yeti (El Nath), Dragon Skin – Drake (Sleepy wood)
35000 EXP and a random Mineral

(LEV55) Shovel - 1xWork Shovel Order Form, 30xStrengthened Mithril Fragment, 20xProcessed Wood, 5xSteel Plate
Mithril Fragment - Reinforced Mithril Mutae (Magatia)
45000 EXP and Forging simulator for weapons to choose (depending on your Job)

(LEV60) White Crewneck Shirt - 1xWhite Cotton Shirt Order Form, 10xMagic Powder (White), 100xWhite Fang Tail
white fang – white fang (El Nath)
57400 EXP and Basic Diamond x 2(not sure if its random)

(LEV65) Beach Sandals - 1xBeach Sandals Order Form, 1xMagic Powder (Blue), 25xMr. Alli's Leather, 25xStraw Doll
Straw doll – Straw target dummy (Mulung), Mr. Alli's Leather – Mr Alli (Herbtown)
72700 EXP and Gold Plate x 2(not sure if its random)

(LEV70) Water Gun for Training - 1xTraining Gun Order Form, 70xCable Bundle, 7xMecateon's Laser Gun, 7xScrew
Cable Bundle – Roid (Magatia), Laser gun – Mecateon (Omega)
92800 EXP and a random Crystal

(LEV75) Gloves for Outside - 1xOutdoor Gloves Order Form, 1xMagic Powder (Brown), 30xDark Rash's Furball, 10xLucida Tail
Dark Rash's Furball – Dark Rash (Leafre), Lucida Tail – Lucida (Orbis)
117100 EXP and a random Intermediate Jewel

(LEV80) Mittens - 1xMittens Order Form, 1xMagic Powder (Red), 30xHaf's Tail Feather, 20xSoft Feather
Haf's Tail Feather – Haf (Leafre), Soft Feather – Goat (Shanghai)
149000 EXP and a glove production simulator(not sure)

(LEV85) Clean Mop - 1xClean Mop Order Form, 6xMagic Powder (White), 12xBlood Haf's Crown, 1xSmall Flaming Feather, 36xStiff Feather
Blood Haf's Crown - Blood Haf (Leafre), Small Flaming Feather - Blood Haf (Leafre), Stiff Feather – Pig (Henesys)
188300 EXP and Forging simulator for weapons to choose (depending on your Job)

(LEV90) Training Uniform - 1xTraining Uniform Order Form, 3xMagic Powder (White), 30xRed Belt, 30xKentaurus's Flame
Red Belt – Panda (Mulung), Kentaurus's Flame – Red Kentaurus (leafre)
234800 EXP and Amour, glove or shoe production simulator to choose

(LEV95) Durable Rake - 1xStrong Rake Order Form, 30xLime Powder Bottle, 10xSteel Plate, 10xProcessed Wood
Lime Powder Bottle – Bone Fish (Aqua)
301400 EXP and a random Intermediate Jewel

(LEV100) Warm Fur Boots - 1xFur Boots Order Form, 30xViking Sail, 5xFirebomb Flame, 20xSoft Feather
Viking Sail – Sprit Viking (Ludi), Firebomb Flame – Fire Bomb (El Nath), Soft Feather – Goat (Shanghai)
383300 EXP and a Magic powder choose 1 colour

(LEV105) Gold Anvil - 1xDoodly Paper, 6xGold Plate, 2xSteel Plate, 1xLithium
960000 EXP and Maker skill 3

pre big bang how to craft power crystals

As he dies he gives his crystal to Milo, telling him to save Atlantis and Kida. James Garner as Commander Lyle Tiberius Rourke, the leader of the band of . of his ideas—notably that of a mother-crystal which provides power, healing, and .. big problem with Disney's latest animated feature, Atlantis: The Lost Empire.

pre big bang how to craft power crystals
Written by Namuro
1 Comment
  • Dogul

    DogulJune 07, 2019 9:59 AM

    What good phrase

Write a comment